
Neural Network Theory: From Simple Network to

Complex Handwritten digit Recognition

Complete Mathematical Fromulation Guide

CSCI 431 - Machine Learning
Artificial Neural Network Fundamentals

Prithvi Raj Singh

October 12, 2025

Abstract

This document provides a comprehensive mathematical formulation of feedforward neural net-
works, backpropagation, and stochastic gradient descent. It covers the theoretical foundations needed
to implement a multi-layer perceptron from scratch, with specific applications to small networks -
that accepts simple input number and the MNIST handwritten digit recognition problem - a classic
ML problem. The sample codes are in JAVA, but one can implement simple neural network in any
language once they understand the foundation.

Contents

1 Introduction to Neural Networks 3
1.1 Basic Concepts . 3
1.2 Network Architecture . 3

2 Forward Propagation 3
2.1 Mathematical Formulation . 3
2.2 Sigmoid Activation Function . 4
2.3 Matrix Operations . 4

3 Loss Function 4
3.1 Mean Squared Error . 4

4 Backpropagation 5
4.1 The Chain Rule . 5
4.2 Gradient Computation . 5
4.3 Derivation of Backpropagation . 5

4.3.1 Output Layer Gradient . 5
4.3.2 Hidden Layer Gradient . 5

5 Stochastic Gradient Descent 6
5.1 Optimization Methods . 6
5.2 Mini-batch Training Algorithm . 6
5.3 Learning Rate Selection . 6

6 Implementation Details 7
6.1 Weight Initialization . 7
6.2 Input Normalization . 7
6.3 One-Hot Encoding . 7
6.4 Making Predictions . 8

1

7 Worked Example 8
7.1 Problem Setup . 8
7.2 Forward Pass . 8
7.3 Backward Pass . 9
7.4 Weight Updates . 9

8 Performance Metrics 10
8.1 Accuracy . 10
8.2 Per-Class Accuracy . 10
8.3 Expected Results . 10

9 Common Issues and Solutions 10
9.1 Numerical Stability . 10
9.2 Vanishing Gradients . 10
9.3 Debugging Strategies . 11

10 Advanced Topics 11
10.1 Alternative Activation Functions . 11

10.1.1 ReLU (Rectified Linear Unit) . 11
10.1.2 Tanh (Hyperbolic Tangent) . 11

10.2 Regularization . 11
10.2.1 L2 Regularization (Weight Decay) . 11
10.2.2 Dropout . 11

10.3 Optimization Improvements . 11
10.3.1 Momentum . 11
10.3.2 Adam Optimizer . 12

11 Implementation Checklist 12
11.1 Part 1: Small Network . 12
11.2 Part 2: MNIST Network . 12

12 Mathematical Summary 13

13 Conclusion 13

A Matrix Calculus Identities 14

B Notation Reference 14

C Dimensionality Reference 14

D Code Snippets 14
D.1 Sigmoid Function . 14
D.2 Matrix Multiplication . 15
D.3 Forward Propagation . 15

2

1 Introduction to Neural Networks

1.1 Basic Concepts

A neural network is a computational model inspired by biological neural systems. It consists of intercon-
nected processing units (neurons) organized in layers that transform input data into meaningful outputs
through learned representations.

Definition 1.1 (Artificial Neuron). An artificial neuron computes a weighted sum of its inputs, adds a
bias term, and applies an activation function:

y = σ

(
n∑

i=1

wixi + b

)
(1)

where xi are inputs, wi are weights, b is the bias, and σ is the activation function.

1.2 Network Architecture

Definition 1.2 (Multi-Layer Perceptron). A multi-layer perceptron (MLP) consists of:

• Input Layer: Receives raw input features x ∈ Rn0

• Hidden Layer(s): Intermediate representations h ∈ Rn1

• Output Layer: Final predictions y ∈ Rn2

Let’s consider two architectures:

1. Small Network: 4→ 3→ 2 (4 inputs, 3 hidden, 2 outputs)

2. MNIST Network: 784→ 15→ 10 (784 inputs, 15 hidden, 10 outputs)

2 Forward Propagation

2.1 Mathematical Formulation

Forward propagation computes the network output given an input vector.

Forward Propagation Algorithm

Given input x ∈ Rn0 , compute:
Layer 1 (Input → Hidden):

z(1) = W(1)x+ b(1) (2)

a(1) = σ(z(1)) (3)

Layer 2 (Hidden → Output):

z(2) = W(2)a(1) + b(2) (4)

a(2) = σ(z(2)) (5)

where:

• W(1) ∈ Rn1×n0 : Weight matrix from input to hidden

• b(1) ∈ Rn1 : Bias vector for hidden layer

• W(2) ∈ Rn2×n1 : Weight matrix from hidden to output

• b(2) ∈ Rn2 : Bias vector for output layer

• z(l): Pre-activation (linear combination)

• a(l): Activation (after applying σ)

3

2.2 Sigmoid Activation Function

Definition 2.1 (Sigmoid Function). The sigmoid (logistic) activation function is defined as:

σ(z) =
1

1 + e−z
(6)

Properties:

• Output range: (0, 1)

• Monotonically increasing

• Differentiable everywhere

• limz→∞ σ(z) = 1, limz→−∞ σ(z) = 0

Theorem 2.1 (Sigmoid Derivative). The derivative of the sigmoid function has a simple form:

dσ(z)

dz
= σ(z)(1− σ(z)) (7)

Proof. Let σ(z) = (1 + e−z)−1. Using the chain rule:

dσ

dz
= −(1 + e−z)−2 · (−e−z)

=
e−z

(1 + e−z)2

=
1

1 + e−z
· e−z

1 + e−z

=
1

1 + e−z
· (1 + e−z)− 1

1 + e−z

= σ(z) · (1− σ(z))

This derivative form is computationally efficient since we already have σ(z) from forward propagation.

2.3 Matrix Operations

Definition 2.2 (Matrix Multiplication). For A ∈ Rm×n and B ∈ Rn×p, the product C = AB ∈ Rm×p

is:

Cij =

n∑
k=1

AikBkj (8)

Definition 2.3 (Hadamard Product). The element-wise (Hadamard) product C = A⊙B is:

Cij = Aij ·Bij (9)

3 Loss Function

3.1 Mean Squared Error

For regression and simple network, we use Mean Squared Error (MSE):

Definition 3.1 (MSE Loss). Given predicted output ŷ and target y:

L(ŷ,y) = 1

2
∥ŷ − y∥2 =

1

2

n∑
i=1

(ŷi − yi)
2 (10)

The factor of 1
2 simplifies the derivative. The gradient with respect to predictions is:

∂L
∂ŷ

= ŷ − y (11)

4

4 Backpropagation

4.1 The Chain Rule

Backpropagation is the application of the chain rule to compute gradients efficiently.

Theorem 4.1 (Chain Rule for Gradients). For a composition of functions f(g(x)):

∂f

∂x
=

∂f

∂g
· ∂g
∂x

(12)

4.2 Gradient Computation

Backpropagation Algorithm

Step 1: Output Layer Error

δ(2) = (a(2) − y)⊙ σ′(a(2)) (13)

where σ′(a(2)) = a(2) ⊙ (1− a(2)).
Step 2: Hidden Layer Error

δ(1) =
(
(W(2))⊤δ(2)

)
⊙ σ′(a(1)) (14)

Step 3: Compute Gradients

∂L
∂W(2)

= δ(2)(a(1))⊤ (15)

∂L
∂b(2)

= δ(2) (16)

∂L
∂W(1)

= δ(1)x⊤ (17)

∂L
∂b(1)

= δ(1) (18)

Step 4: Update Parameters

W(l) ←W(l) − η
∂L

∂W(l)
(19)

b(l) ← b(l) − η
∂L
∂b(l)

(20)

where η is the learning rate.

4.3 Derivation of Backpropagation

4.3.1 Output Layer Gradient

Starting with the loss L = 1
2∥a

(2) − y∥2:

∂L
∂W(2)

=
∂L
∂a(2)

∂a(2)

∂z(2)
∂z(2)

∂W(2)
(21)

= (a(2) − y)⊙ σ′(z(2)) · (a(1))⊤ (22)

= δ(2)(a(1))⊤ (23)

4.3.2 Hidden Layer Gradient

For the hidden layer, we propagate the error backwards:

5

∂L
∂a(1)

= (W(2))⊤
∂L
∂z(2)

(24)

= (W(2))⊤δ(2) (25)

Then:

∂L
∂W(1)

=
∂L
∂a(1)

∂a(1)

∂z(1)
∂z(1)

∂W(1)
(26)

=
[
(W(2))⊤δ(2) ⊙ σ′(z(1))

]
x⊤ (27)

= δ(1)x⊤ (28)

5 Stochastic Gradient Descent

5.1 Optimization Methods

Definition 5.1 (Batch Gradient Descent). Update parameters using the entire training set:

W←W − η
1

N

N∑
i=1

∇WL(x(i),y(i)) (29)

Definition 5.2 (Stochastic Gradient Descent (SGD)). Update parameters using one example at a time:

W←W − η∇WL(x(i),y(i)) (30)

Definition 5.3 (Mini-batch SGD). Update parameters using a small batch of B examples:

W←W − η
1

B

B∑
j=1

∇WL(x(j),y(j)) (31)

5.2 Mini-batch Training Algorithm

Algorithm 1 Mini-batch Stochastic Gradient Descent

Require: Training data {(x(i),y(i))}Ni=1, batch size B, learning rate η, epochs E
Ensure: Trained parameters W(1),b(1),W(2),b(2)

1: Initialize weights randomly
2: for e = 1 to E do
3: Shuffle training data
4: for each mini-batch B = {(x(j),y(j))}Bj=1 do

5: Initialize gradient accumulators: ∇W(1) = 0, ∇b(1) = 0, etc.
6: for each (x(j),y(j)) ∈ B do
7: Forward propagate: compute a(1),a(2)

8: Backward propagate: compute δ(1), δ(2)

9: Accumulate gradients: ∇W(l) += ∂L
∂W(l)

10: end for
11: Average gradients: ∇W(l) ← 1

B∇W
(l)

12: Update parameters: W(l) ←W(l) − η∇W(l)

13: end for
14: Evaluate performance on training/validation set
15: end for

5.3 Learning Rate Selection

The learning rate η controls the step size:

6

• Too small (η ≪ 1): Slow convergence, many epochs needed

• Too large (η ≫ 1): Unstable, may diverge

• Recommended values:

– Small network (Part 1): η = 10

– MNIST network (Part 2): η = 3

6 Implementation Details

6.1 Weight Initialization

• Part 1: Use predefined weights from spreadsheet

• Part 2: Random initialization uniformly in [−1, 1]

Listing 1: Random Weight Initialization in Java

Random rand = new Random ();

for (int i = 0; i < rows; i++) {

for (int j = 0; j < cols; j++) {

weights[i][j] = rand.nextDouble () * 2 - 1;

}

}

6.2 Input Normalization

MNIST pixel values range from 0 to 255. Normalize to [0, 1]:

xnorm =
xraw

255
(32)

This prevents sigmoid saturation and improves gradient flow.

6.3 One-Hot Encoding

Convert class labels to vectors:

Example 6.1 (One-Hot Encoding). For 10 classes (digits 0-9):

Label 0→ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤

Label 7→ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]⊤

Label 9→ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]⊤

Listing 2: One-Hot Encoding in Java

public static double [] toOneHot(int label , int numClasses) {

double [] oneHot = new double[numClasses];

oneHot[label] = 1.0;

return oneHot;

}

7

6.4 Making Predictions

The predicted class is the output neuron with maximum activation:

ŷ = argmax
i

a
(2)
i (33)

Listing 3: Get Prediction in Java

public static int getPrediction(double [] output) {

int maxIndex = 0;

double maxValue = output [0];

for (int i = 1; i < output.length; i++) {

if (output[i] > maxValue) {

maxValue = output[i];

maxIndex = i;

}

}

return maxIndex;

}

7 Worked Example

7.1 Problem Setup

Consider the small network with following layers:

• Architecture: 4→ 3→ 2

• Input: x = [0, 1, 0, 1]⊤

• Target: y = [0, 1]⊤

• Learning rate: η = 10

Initial weights:

W(1) =

−0.21 0.72 −0.25 1.00
−0.94 −0.41 −0.47 0.63
0.15 0.55 −0.49 −0.75

 , b(1) =

 0.10
−0.36
−0.31

 (34)

W(2) =

[
0.76 0.48 −0.73
0.34 0.89 −0.23

]
, b(2) =

[
0.16
−0.46

]
(35)

7.2 Forward Pass

Hidden layer:

z(1) = W(1)x+ b(1)

=

−0.21 0.72 −0.25 1.00
−0.94 −0.41 −0.47 0.63
0.15 0.55 −0.49 −0.75



0
1
0
1

+

 0.10
−0.36
−0.31



=

 0.72 + 1.00 + 0.10
−0.41 + 0.63− 0.36
0.55− 0.75− 0.31

 =

 1.82
−0.14
−0.51



a(1) = σ(z(1))

=

 σ(1.82)
σ(−0.14)
σ(−0.51)

 =

0.86050.4651
0.3752



8

Output layer:

z(2) = W(2)a(1) + b(2)

=

[
0.76 0.48 −0.73
0.34 0.89 −0.23

]0.86050.4651
0.3752

+

[
0.16
−0.46

]

=

[
0.7633
0.1602

]

a(2) = σ(z(2)) =

[
0.6821
0.5400

]

7.3 Backward Pass

Output deltas:

δ(2) = (a(2) − y)⊙ a(2) ⊙ (1− a(2))

=

[
0.6821− 0
0.5400− 1

]
⊙
[
0.6821× 0.3179
0.5400× 0.4600

]
=

[
0.6821
−0.4600

]
⊙
[
0.2169
0.2484

]
=

[
0.1479
−0.1143

]
Hidden deltas:

δ(1) =
[
(W(2))⊤δ(2)

]
⊙ a(1) ⊙ (1− a(1))

=

 0.76 0.34
0.48 0.89
−0.73 −0.23

[0.1479
−0.1143

]
⊙

0.8605× 0.1395
0.4651× 0.5349
0.3752× 0.6248


=

 0.0736
−0.0307
−0.0817

⊙
0.12000.2488
0.2344

 =

 0.0088
−0.0076
−0.0192


7.4 Weight Updates

Output weights:

∂L
∂W(2)

= δ(2)(a(1))⊤

=

[
0.1479
−0.1143

] [
0.8605 0.4651 0.3752

]
=

[
0.1273 0.0688 0.0555
−0.0983 −0.0531 −0.0429

]

W(2)
new = W(2) − η

∂L
∂W(2)

=

[
0.76 0.48 −0.73
0.34 0.89 −0.23

]
− 10

[
0.1273 0.0688 0.0555
−0.0983 −0.0531 −0.0429

]
=

[
−0.513 −0.208 −1.285
1.323 1.421 0.199

]

9

Hidden weights:

∂L
∂W(1)

= δ(1)x⊤

=

 0.0088
−0.0076
−0.0192

 [0 1 0 1
]

=

0 0.0088 0 0.0088
0 −0.0076 0 −0.0076
0 −0.0192 0 −0.0192


Note: Gradients are zero for weights connected to zero inputs.

8 Performance Metrics

8.1 Accuracy

For classification tasks:

Accuracy =
Number of correct predictions

Total number of examples
× 100% (36)

8.2 Per-Class Accuracy

For digit d ∈ {0, 1, . . . , 9}:

Accuracyd =
Correct predictions for digit d

Total examples of digit d
(37)

8.3 Expected Results

Network Configuration Expected Accuracy
Part 1 (Small) η = 10, 6 epochs Outputs match spreadsheet
Part 2 (MNIST) η = 3, batch=10, 30 epochs > 95% on test set

Table 1: Expected performance metrics

9 Common Issues and Solutions

9.1 Numerical Stability

Problem: Sigmoid overflow for large |z|.
Solution: Clip extreme values:

Listing 4: Numerically Stable Sigmoid

public double sigmoid(double z) {

if (z < -500) return 0.0;

if (z > 500) return 1.0;

return 1.0 / (1.0 + Math.exp(-z));

}

9.2 Vanishing Gradients

Problem: Gradients become very small in deep networks.
Cause: Sigmoid derivative σ′(z) ≤ 0.25, so repeated multiplication makes gradients vanish.
Solutions:

• Use ReLU activation (for deeper networks)

10

• Proper weight initialization

• Batch normalization (advanced)

9.3 Debugging Strategies

1. Gradient Checking: Compare analytical gradients with numerical approximation:

∂L
∂w
≈ L(w + ϵ)− L(w − ϵ)

2ϵ
(38)

where ϵ = 10−7.

2. Monitor Loss: Loss should decrease monotonically (with mini-batch noise).

3. Check Dimensions: Ensure all matrix operations have compatible dimensions.

4. Print Intermediate Values: Compare with known correct values (e.g., spreadsheet).

10 Advanced Topics

10.1 Alternative Activation Functions

10.1.1 ReLU (Rectified Linear Unit)

ReLU(z) = max(0, z), ReLU′(z) =

{
1 if z > 0

0 otherwise
(39)

Advantages: No vanishing gradient, computationally efficient.

10.1.2 Tanh (Hyperbolic Tangent)

tanh(z) =
ez − e−z

ez + e−z
, tanh′(z) = 1− tanh2(z) (40)

Advantages: Zero-centered output, stronger gradients than sigmoid.

10.2 Regularization

10.2.1 L2 Regularization (Weight Decay)

Add penalty term to loss:

Lreg = L+
λ

2

∑
l

∥W(l)∥2F (41)

Gradient update becomes:

W(l) ←W(l) − η

(
∂L

∂W(l)
+ λW(l)

)
(42)

10.2.2 Dropout

Randomly set neuron activations to zero with probability p during training. Prevents co-adaptation of
features.

10.3 Optimization Improvements

10.3.1 Momentum

vt = βvt−1 + (1− β)∇WL (43)

W←W − ηvt (44)

11

10.3.2 Adam Optimizer

Combines momentum with adaptive learning rates:

mt = β1mt−1 + (1− β1)∇WL (45)

vt = β2vt−1 + (1− β2)(∇WL)2 (46)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(47)

W←W − η
m̂t√
v̂t + ϵ

(48)

11 Implementation Checklist

11.1 Part 1: Small Network

Please don’t expect to get similar output results when you run the code.

□ Initialize weights with given values

□ Implement sigmoid and its derivative

□ Implement forward propagation (input → hidden → output)

□ Implement backward propagation (compute deltas)

□ Implement weight updates

□ Train for few epochs with η = 10 or variable, batch size = 2

11.2 Part 2: MNIST Network

□ Implement CSV data loading

□ Normalize pixel values (divide by 255)

□ Implement one-hot encoding

□ Initialize weights randomly in [−1, 1]

□ Implement mini-batch training with shuffling

□ Implement save/load functionality

□ Implement accuracy evaluation

□ Implement ASCII visualization

□ Create menu-driven interface

□ Train for 20→ 30epochswithη = 3, batch size = 10

□ Achieve > 90% test accuracy

12

12 Mathematical Summary

Key Equations

Forward Propagation:

z(1) = W(1)x+ b(1)

a(1) = σ(z(1))

z(2) = W(2)a(1) + b(2)

a(2) = σ(z(2))

Backward Propagation:

δ(2) = (a(2) − y)⊙ σ′(a(2))

δ(1) = [(W(2))⊤δ(2)]⊙ σ′(a(1))

Gradients:

∂L
∂W(2)

= δ(2)(a(1))⊤

∂L
∂b(2)

= δ(2)

∂L
∂W(1)

= δ(1)x⊤

∂L
∂b(1)

= δ(1)

Parameter Updates:

W←W − η
∂L
∂W

b← b− η
∂L
∂b

Activation:

σ(z) =
1

1 + e−z

σ′(a) = a(1− a)

13 Conclusion

This document has presented the complete mathematical theory for implementing feedforward neural
networks with backpropagation. The key insights are:

1. Forward propagation computes predictions through successive linear transformations and non-
linear activations.

2. Backpropagation efficiently computes gradients by applying the chain rule backwards through
the network.

3. Stochastic gradient descent optimizes parameters by iteratively moving in the direction that
reduces loss.

4. Mini-batches provide a balance between computational efficiency and gradient stability.

The mathematics, while appearing complex, follows directly from calculus fundamentals. Under-
standing these principles enables implementation from scratch and provides the foundation for more
advanced architectures.

13

A Matrix Calculus Identities

Function Derivative
f(x) = Ax ∇xf = A⊤

f(x) = x⊤Ax ∇xf = (A+A⊤)x
f(X) = tr(AX) ∇Xf = A⊤

f(x) = σ(x) f ′(x) = σ(x)(1− σ(x))

Table 2: Useful matrix calculus identities

B Notation Reference

Symbol Meaning
x Input vector
y Target output vector
W(l) Weight matrix for layer l
b(l) Bias vector for layer l
z(l) Pre-activation at layer l
a(l) Activation at layer l

δ(l) Error term (delta) at layer l
σ Sigmoid activation function
η Learning rate
L Loss function
⊙ Element-wise (Hadamard) product
⊤ Matrix transpose
∇ Gradient operator

Table 3: Mathematical notation used throughout this document

C Dimensionality Reference

For a network with architecture n0 → n1 → n2:

Variable Dimensions
x n0 × 1
W(1) n1 × n0

b(1) n1 × 1
z(1) n1 × 1
a(1) n1 × 1
W(2) n2 × n1

b(2) n2 × 1
z(2) n2 × 1
a(2) n2 × 1
y n2 × 1

δ(2) n2 × 1

δ(1) n1 × 1

Table 4: Dimensions for network variables

D Code Snippets

D.1 Sigmoid Function

14

Listing 5: Sigmoid Implementation

private double sigmoid(double z) {

if (z < -500) return 0.0;

if (z > 500) return 1.0;

return 1.0 / (1.0 + Math.exp(-z));

}

private double sigmoidDerivative(double a) {

return a * (1.0 - a);

}

D.2 Matrix Multiplication

Listing 6: Matrix Multiplication

public static double [][] matrixMultiply(double [][] A, double [][] B) {

int m = A.length;

int n = A[0]. length;

int p = B[0]. length;

double [][] C = new double[m][p];

for (int i = 0; i < m; i++) {

for (int j = 0; j < p; j++) {

C[i][j] = 0;

for (int k = 0; k < n; k++) {

C[i][j] += A[i][k] * B[k][j];

}

}

}

return C;

}

D.3 Forward Propagation

Listing 7: Forward Propagation

public double [] forwardPropagate(double [] input) {

// Hidden layer

double [] hidden = new double[hiddenSize];

for (int i = 0; i < hiddenSize; i++) {

double sum = biasHidden[i];

for (int j = 0; j < inputSize; j++) {

sum += weightsInputHidden[i][j] * input[j];

}

hidden[i] = sigmoid(sum);

}

// Output layer

double [] output = new double[outputSize];

for (int i = 0; i < outputSize; i++) {

double sum = biasOutput[i];

for (int j = 0; j < hiddenSize; j++) {

sum += weightsHiddenOutput[i][j] * hidden[j];

}

output[i] = sigmoid(sum);

}

return output;

}

15

Listing 8: Backward Propagation

public void backwardPropagate(double [] target) {

System.out.println("\n=== Backward Propagation ===");

System.out.println("Target: " + arrayToString(target));

// STEP 1: Calculate output layer error

// Delta = (Output - Target) ’(Output)

double [] outputDeltas = new double[outputSize];

for (int i = 0; i < outputSize; i++) {

double error = outputActivations[i] - target[i];

outputDeltas[i] = error * sigmoidDerivative(outputActivations[i]);

System.out.printf("Output Delta [%d]: %.6f\n", i, outputDeltas[i]);

}

// STEP 2: Calculate hidden layer error

// Error_hidden = W2^T Delta_output

// Delta_hidden = Error_hidden ’(Hidden)

double [] hiddenDeltas = new double[hiddenSize];

for (int i = 0; i < hiddenSize; i++) {

double error = 0.0;

// Sum of (weight output_delta) for all output neurons

for (int j = 0; j < outputSize; j++) {

error += weightsHiddenOutput[j][i] * outputDeltas[j];

}

hiddenDeltas[i] = error * sigmoidDerivative(hiddenActivations[i]);

System.out.printf("Hidden Delta [%d]: %.6f\n", i, hiddenDeltas[i]);

}

// STEP 3: Update weights and biases

System.out.println("\n=== Weight Updates ===");

// Update W2 (hidden output weights)

for (int i = 0; i < outputSize; i++) {

for (int j = 0; j < hiddenSize; j++) {

double gradient = outputDeltas[i] * hiddenActivations[j];

double oldWeight = weightsHiddenOutput[i][j];

weightsHiddenOutput[i][j] -= learningRate * gradient;

System.out.printf("W2[%d][%d]: %.6f %.6f (grad =%.6f)\n",

i, j, oldWeight , weightsHiddenOutput[i][j], gradient);

}

}

// Update B2 (output biases)

for (int i = 0; i < outputSize; i++) {

double oldBias = biasOutput[i];

biasOutput[i] -= learningRate * outputDeltas[i];

System.out.printf("B2[%d]: %.6f %.6f\n",

i, oldBias , biasOutput[i]);

}

// Similar logic will be applied to update the W1 (input hidden weights)

and B1 (hidden biases)

}

References

[1] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-536.

[2] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324.

16

[3] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

[4] Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

[5] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

17

	Introduction to Neural Networks
	Basic Concepts
	Network Architecture

	Forward Propagation
	Mathematical Formulation
	Sigmoid Activation Function
	Matrix Operations

	Loss Function
	Mean Squared Error

	Backpropagation
	The Chain Rule
	Gradient Computation
	Derivation of Backpropagation
	Output Layer Gradient
	Hidden Layer Gradient

	Stochastic Gradient Descent
	Optimization Methods
	Mini-batch Training Algorithm
	Learning Rate Selection

	Implementation Details
	Weight Initialization
	Input Normalization
	One-Hot Encoding
	Making Predictions

	Worked Example
	Problem Setup
	Forward Pass
	Backward Pass
	Weight Updates

	Performance Metrics
	Accuracy
	Per-Class Accuracy
	Expected Results

	Common Issues and Solutions
	Numerical Stability
	Vanishing Gradients
	Debugging Strategies

	Advanced Topics
	Alternative Activation Functions
	ReLU (Rectified Linear Unit)
	Tanh (Hyperbolic Tangent)

	Regularization
	L2 Regularization (Weight Decay)
	Dropout

	Optimization Improvements
	Momentum
	Adam Optimizer

	Implementation Checklist
	Part 1: Small Network
	Part 2: MNIST Network

	Mathematical Summary
	Conclusion
	Matrix Calculus Identities
	Notation Reference
	Dimensionality Reference
	Code Snippets
	Sigmoid Function
	Matrix Multiplication
	Forward Propagation

