MNIST Handwritten Digit Recognition

Implementation Guide for Students

CSCI 431: Machine Learning
Prithvi Raj Singh

Implementation of a Neural Network for MNIST Digit Recognition

Abstract

This guide provides essential information for implementing a neural network to recognize handwritten
digits from the MNIST dataset. It includes code snippets for key components, algorithmic guidance, and
practical tips without providing the complete solution. Students are expected to understand the concepts
and write their own implementation.

1 Overview

You will implement a fully connected feedforward neural network with the following architecture:
e Input Layer: 784 neurons (28x28 pixel images)
e Hidden Layer: 15 neurons (minimum requirement)
e Output Layer: 10 neurons (digits 0-9)
Key Requirements:
1. No external libraries (except java.util & java.io)
2. Implement all matrix operations yourself
3. Use mini-batch stochastic gradient descent

4. Achieve > 95% accuracy on test set. Lower accuracy may indicate bugs. But don’t worry too much
about it.

2 Data Handling
2.1 Understanding MINIST Data Format

Each line in the CSV files contains 785 comma-separated values:

label, pixely) o, pixely 1, . . ., pixely; o7 (1)

Label: The digit (0-9)

Pixels: 784 grayscale values (0-255)

Normalization: Convert pixel values to [0, 1] by dividing by 255

¢ One-Hot Encoding: Convert label to a 10-element vector for training

It is very possible if you download dataset from other sources than suggested, file headers might be
different so you need to handle that accordingly.



2.2 Loading CSV Data

Listing 1: Reading MNIST CSV File

import java.io.x*;
import java.util.x*;

public List<MNISTData> loadMNISTData(String filename)
throws IOException {

List<MNISTData> datalList = new ArrayList<>();
BufferedReader reader = new BufferedReader (
new FileReader (filename)) ;

String line;
while ((line = reader.readlLine()) !'= null) {
String[] values = line.split(",");

// Parse label (first wvalue)
int label = Integer.parselnt(values[0].trim());

// Parse and normalize pizels (remaining 784 values)
double [] pixels = new double [784];
for (int i = 0; i < 784; i++) A{
// TODO: Parse pizel wvalue from wvalues[i+1]
// TODO: Normalize to [0, 1] by dividing by 255
pixels[i]l = /* YOUR CODE HERE */;
}

datalist.add(new MNISTData(label, pixels));
}

reader.close () ;
return datalist;

2.3 Data Structure

Create a simple class to hold each training example:

Listing 2: MNIST Data Structure

public class MNISTData {

int label; // The digit (0-9)
double [] pizxels; // 784 mnormalized pizel values
double [] oneHot; // 10-element ome-hot encoded label

public MNISTData(int label, double[] pixels) {
this.label = label;
this.pixels = pixels;
this.oneHot = createOneHot (label);

}

private double[] createOneHot(int label) {
double [] oneHot = new double[10];
// TODO: Set the appropriate indez to 1.0
// Ezample: label=7 -> [0,0,0,0,0,0,0,1,0,0]
return oneHot;




Why One-Hot Encoding?

The network outputs 10 values (one per digit). One-hot encoding converts the label into a vector that can

be directly compared with the network output using Mean Squared Error.

3 Network Architecture

3.1 Weight and Bias Initialization

Initialize weights randomly in the range [—1, 1]:

Listing 3: Random Weight Initialization

import java.util.Random;

public void initializeWeights() {
Random rand = new Random() ;

// Initialize W1: hiddenSize z= inputSize
weightsInputHidden = new double[hiddenSize] [inputSize];
for (int i = 0; i < hiddenSize; i++) {
for (int j = 0; j < inputSize; j++) {
weightsInputHidden[i][j] =
rand.nextDouble() * 2 - 1; // Range: [-1, 1]

}

// Initialize Bl: hiddenSize z 1

biasHidden = new double[hiddenSizel;

for (int i = 0; i < hiddenSize; i++) {
biasHidden[i] = rand.nextDouble() * 2 - 1;

}

// TODO: Stimilarly inttialize W2 and B2
// W2 dimensions: outputSize = hiddenSize
// B2 dimenstons: outputSize z 1

3.2 Forward Propagation Structure

The forward pass should compute activations for each layer:

Listing 4: Forward Propagation Pattern

public double[] forwardPropagate (double[] input) {
// Layer 1: Input -> Hidden
double [] hiddenZ = new double[hiddenSizel;
double[] hiddenA = new double[hiddenSizel];

for (int i = 0; i < hiddenSize; i++) {
// Step 1: Compute weighted sum
hiddenZ[i] = biasHidden[i];
for (int j = 0; j < inputSize; j++) {
hiddenZ[i] += weightsInputHidden[i][j] * input([j];
}

// Step 2: Apply activation function




hiddenA[i] = sigmoid(hiddenZ[i]);
}

// Layer 2: Hidden -> Output
// TODO: Similar structure for output layer
// Use hiddend as input to this layer

return outputActivations;

4 Training Algorithm
4.1 Mini-Batch SGD Overview

Mini-Batch Training Algorithm

For each epoch:
1. Shuffle the training data
2. Divide data into mini-batches of size B
3. For each mini-batch:

(a) Initialize gradient accumulators to zero
(b) For each example in batch:

i. Forward propagate
ii. Compute output error
iii. Backward propagate (compute deltas)
iv. Accumulate gradients (don’t update yet!)

(¢) Average all accumulated gradients by batch size

(d) Update all weights and biases once

4. Evaluate accuracy on training set

4.2 Training Loop Structure

Listing 5: Training Loop Pattern

public void train(List<MNISTData> trainingData, int epochs) {
for (int epoch = 0; epoch < epochs; epoch++) {
// Shuffle data for this epoch
Collections.shuffle(trainingData);

// Process mini-batches
for (int i = 0; i < trainingData.size();
i += miniBatchSize) {

// Eztract mini-batch
int batchEnd = Math.min(
i + miniBatchSize, trainingData.size());
List<MNISTData> batch =
trainingData.subList (i, batchEnd);




// Train on this mini-batch
trainMiniBatch(batch) ;
}

// Evaluate and print statistics
evaluateAccuracy(trainingData);

4.3 Mini-Batch Training Implementation Hint

Listing 6: Mini-Batch Training Structure

private void trainMiniBatch(List<MNISTData> batch) {
int batchSize = batch.size();

// Create gradient accumulators (initialized to 0)

double []1[] w2Gradients = new double[outputSize][hiddenSizel;
double [] b2Gradients = new double[outputSizel;

// TODO: Create wilGradients and blGradients

// Accumulate gradients for each ezample
for (MNISTData example : batch) {
// 1. Forward propagate
// 2. Compute deltas (backpropagation)
// 3. Add to gradient accumulators
// (do NOT update weights yet!)
}

// Average gradients and update weights
double scale = learningRate / batchSize;
for (int i = 0; i < outputSize; i++) {

for (int j = 0; j < hiddenSize; j++) {
weightsHiddenOutput [i][j] -= scale * w2Gradients[i][j];
}
biasOutput[i] -= scale * b2Gradients[il];
}

// TODO: Similarly update W1 and B1

5 Key Implementation Details

5.1 Sigmoid Function

Listing 7: Numerically Stable Sigmoid

private double sigmoid(double z) {
// Prevent overflow for extreme wvalues
if (z < -500) return 0.0;
if (z > 500) return 1.0;
return 1.0 / (1.0 + Math.exp(-2z));
}

private double sigmoidDerivative (double activation) {
// Input <s the activation (after stigmoid)




// NOT the pre-activation z
return activation * (1.0 - activation);

5.2 Making Predictions

Listing 8: Getting Network Prediction

public int predict (double[] input) {
double [] output = forwardPropagate (input);

// Find tindex of mazimum output
int maxIndex = O0;
double maxValue = output [0];

for (int i = 1; i < output.length; i++) {
if (output[i] > maxValue) {
maxValue output [i];
maxIndex ij;

return maxIndex; // This %is the predicted digit

5.3 Evaluating Accuracy

Listing 9: Accuracy Evaluation

public void evaluateAccuracy(List<MNISTData> data) {
int[] digitCounts = new int [10];
int[] correctCounts = new int[10];
int totalCorrect = 0;

for (MNISTData example : data) {
int predicted = predict(example.pixels);
int actual = example.label;

digitCounts[actuall++;

if (predicted == actual) {
correctCounts [actual]++;
totalCorrect++;

}

// Print per-digit accuracy
System.out.println("Results:");
for (int i = 0; i < 10; i++) {
System.out.printf ("Digit %d: %d/%d\t",
i, correctCounts[i], digitCounts[i]);
if (i % 2 == 1) System.out.println();
}

// Print owerall accuracy

double accuracy = (double)totalCorrect / data.size() * 100;

System.out.printf ("\nAccuracy: %d/%d = %.3f%%\n",
totalCorrect, data.size(), accuracy);




y)‘}

6 Visualization

6.1 ASCII Art Display

Listing 10: Displaying Digit as ASCII Art

private void displayImage (double[] pixels) {
System.out.println("Image (28x28):");

for (int row = 0; row < 28; row++) {
for (int col = 0; col < 28; col++) {
int index = row * 28 + col;

double pixel = pixels[index];

// Map pizel intensity to ASCII character
char ch;

if (pixel < 0.2) ch =’ 7

else if (pixel < 0.4) ch = ’.7;

else if (pixel < 0.6) ch = ’07;
else if (pixel < 0.8) ch = ’07;
else ch = ’0’;

System.out.print (ch);

}
System.out.println();

7 Save/Load Network

7.1 Saving Network State

Listing 11: Saving Network to File

public void saveNetwork(String filename) throws IOException {
PrintWriter writer = new PrintWriter(
new FileWriter (filename)) ;

// Write hyperparameters
writer.println(learningRate);
writer.println(miniBatchSize);
writer.println(inputSize);
writer.println(hiddenSize);
writer.println(outputSize);

// Write all weights (one per line)
for (int i = 0; i < hiddenSize; i++) {
for (int j = 0; j < inputSize; j++) {
writer.println(weightsInputHidden[i][j]);
}
}

// Write all biases




for (int i = 0; i < hiddenSize; i++) {
writer.println(biasHidden[i]);

}
// TODO: Similarly write W2 and B2

writer.close();
System.out.println("Network saved to " + filename);

7.2 Loading Network State

Listing 12: Loading Network from File

public static MNISTNeuralNetwork loadNetwork(String filename)

throws IOException {

BufferedReader reader = new BufferedReader (
new FileReader (filename)) ;

// Read hyperparameters

double 1lr = Double.parseDouble(reader.readlLine());
int batchSize = Integer.parselnt(reader.readLine());
int inputSize = Integer.parselnt(reader.readlLine());
int hiddenSize = Integer.parselnt(reader.readLine());
int outputSize = Integer.parselnt(reader.readLine());

// Create network with these parameters
MNISTNeuralNetwork network =
new MNISTNeuralNetwork (lr, batchSize);

// Read weights in same order they were written
for (int i = 0; i < hiddenSize; i++) {
for (int j = 0; j < inputSize; j++) {
network.weightsInputHidden [i] [j] =
Double.parseDouble (reader.readLine ());

}
// TODO: Read remaining weights and biases

reader.close () ;
return network;

8

User Interface

8.1 Menu System

Listing 13: Simple CLI Menu

public static void main(Stringl[] args) {

Scanner scanner = new Scanner (System.in);
MNISTNeuralNetwork network = null;
List<MNISTData> trainingData = null;
List<MNISTData> testData = null;




while (true) {

System.out.println("\n--- MENU ---");
System.out.println("1. Train the network");
System.out.println("2. Load a pre-trained network");
System.out.println("3. Test on training data");
System.out.println("4. Test on testing data");
System.out.println("5. Show predictions");
System.out.println("6. Show misclassified images");
System.out.println("7. Save network");
System.out.println("0. Exit");
System.out.print ("Choice: ");
String choice = scanner.nextLine().trim();
try {
switch (choice) {
case "1":
// TODO: Get parameters, load data, train
break;
case "2":
// TODO: Load network from file
break;
// TODO: Implement other cases
case "O":
System.out.println("Goodbye!");
return;
default:
System.out.println("Invalid choice");
}

} catch (Exception e) {
System.out.println("Error: " + e.getMessage());

}

9 Practical Tips

9.1 Recommended Hyperparameters

Parameter

Suggested Value

Learning Rate (n)
Mini-batch Size
Number of Epochs
Hidden Neurons

3.0
10
30
15 (minimum)

Table 1: Suggested hyperparameters for good performance

9.2 Debugging Strategies

1. Start small: Test with 100 examples first

2. Monitor loss: Should decrease each epoch

3. Check dimensions: Print array sizes before operations




4. Verify normalization: Pixels should be in [0, 1]
5. Test predictions: Should not all be the same digit

6. Use Part 1: If stuck, verify backprop logic matches Part 1

9.3 Common Mistakes

e Forgetting to normalize pixels (divide by 255)

Updating weights inside batch loop (should accumulate first)

e Wrong matrix dimensions (check rows x columns)

Not shuffling data each epoch

¢ Using wrong index for one-hot (label vs. index)

10 Expected Performance

7

Training Timeline:
e Epoch 1-5: Accuracy rises from ~10% to ~80%
e Epoch 6-15: Accuracy reaches ~90-95%
e Epoch 16-30: Accuracy improves to ~95-99%
Final Results:
e Training accuracy: 98-99%
e Testing accuracy: 95-97%
Timing:
e One epoch (60,000 examples): 20-40 seconds

e Full training (30 epochs): 10-20 minutes

11 What You Need to Implement

This guide has provided:

v Data loading structure

v Network initialization

v Forward propagation pattern

v’ Training loop structure

V" Utility functions (sigmoid, predict, display)
You still need to implement:

O Complete backpropagation logic (compute deltas)

O Gradient calculations for all layers

[0 Weight update logic

0 Complete menu system

O Error handling

0 Any additional features you wish to add

10



Remember: The math previously defined while implementing small netowkr applies directly here.
The only differences are the larger dimensions and mini-batch accumulation. If you understood math before
implementing small network, you can fully extend previous math for MNIST purpose. If you don’t understand
please ask me or refer to the document!

Final Advice: Don’t try to write everything at once. Build incrementally, test frequently, and make sure
you understand each component before moving to the next. Good luck!

11



	Overview
	Data Handling
	Understanding MNIST Data Format
	Loading CSV Data
	Data Structure

	Network Architecture
	Weight and Bias Initialization
	Forward Propagation Structure

	Training Algorithm
	Mini-Batch SGD Overview
	Training Loop Structure
	Mini-Batch Training Implementation Hint

	Key Implementation Details
	Sigmoid Function
	Making Predictions
	Evaluating Accuracy

	Visualization
	ASCII Art Display

	Save/Load Network
	Saving Network State
	Loading Network State

	User Interface
	Menu System

	Practical Tips
	Recommended Hyperparameters
	Debugging Strategies
	Common Mistakes

	Expected Performance
	What You Need to Implement

