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Abstract—The idea of creating a virtual agent that can follow
our instructions and learn from it to do a task we want it to do
is fascinating, and the same is the idea for using reinforcement
learning in object-tracking problems. We formulate the problem
as a sequential decision-making process and the agent is equipped
with a conventional object detector that detects the object and
the agent is trained to make the detection result better. In
this paper, we experiment with using the dynamic method for
object detection. Our detector, which uses VGG16 pre-trained
on ImageNet as a base, is trained using the PASCAL VOC2012
dataset. The agent takes more actions in transforming the
bounding box and the reward accumulated. The AP and recall
are best for an IoU threshold of 0.5 or lower. We get AP and
recall of 36.68 and 59.0 respectively for the ’cat’ class at IoU
of 0.5. In our experiment the AP and recall declines sharply for
IoU threshold for IoU threshold [0.4, 0.5, 0.6, 0.7, 0.8].

Index Terms—Deep Reinforcement Learning (DRL), Average
Precision (AP), Recall, IoU, Huber loss.

I. INTRODUCTION

Object tracking is one of the most important tasks in
Computer Vision and with the rise of Deep Learning methods
like CNN and several variants, the object detection field is
getting better and better. The goal of object tracking is to
localize the target object inside the frame using discriminating
features and track it using spatial-temporal information. There
are several advanced Deep Learning (DL) methods like
YOLOv7, RCNN, Faster-RCNN, SSD, and many others for
precise bounding box detection of the target object. Object
tracking is based on sequential object detection and even the
state-of-the-art methods will have inaccuracies.

When the object is small it has very limited discriminating
factors which makes it harder for many traditional DL
methods to properly detect and track the object. Deep
Reinforcement Learning (DRL) can be potentially beneficial
if it can be designed in the desired way. We can train the
agent, which is tasked with localizing the target object, to
sequentially detect and track the object with a bounding box.
The model that can detect the bounding box for the target
object sequentially can track the object online or offline. DRL
can be used to localize the target object with geometrical
refinement (refinement like transformation to the bounding
box for better localization) [2]. The reinforcement learning
problem is designed as a process of learning through a

Fig. 1. Agent-environment interaction in RL [7].

feedback loop as in Figure 1. The agent interacts with the
environment to achieve a goal.

Whether it’s Multi-object tracking (MOT) or Single object
tracking (SOT), precise bounding box detection is important to
estimate and forecast the trajectory of the target object. Usual
Occlusion and blurriness can degrade the object detection
performance and many Deep Learning methods suffer from
that. DRL can complement the state-of-the-art object detection
models in proper tracking of small, blurry objects through a
reward system. Aerial tracking can benefit from DRL-based
tracking. For example, we can design a drone-based tracking
system that keeps track of the target object. We can reward
the drone if the target object localization bounding box
has IoU ≥ 0.7, and the negative reward will tell the Drone
that it needs to move closer in the direction of the target object.

In this work, we will explore some of the ways Deep
Reinforcement Learning has been implemented for object
detection, and tracking and try to implement their approach
and architecture. The literature review and the architectural
implementation of the preexisting work related to DRL for
object detection should give us a foundational understanding
of DRL applications.

II. RELATED WORKS

There has been abundant research in the field of DRL
implementation for object detection and tracking. DQN-based
approach for object detection was initiated after the success
of DeepMind in creating an agent that can play 2600 Atari
games. Most of the implementation follows a similar approach
and only varies in the ways action dynamics are performed



and how reward is assigned. CNN-based detectors form the
base of the detection model and different types of actions
are predefined for the agent to take. In [8], Zhou and et.al
introduce a DRL-based Multi-Object tracking. In their work,
they built a unified prediction-decision network that predicts
the bounding box for the target object and a decision network
powered with Q-learning takes action to delete or update the
position of an object in the frame. This approach helps in
making the detection result better.

In [10] Gozena and Ozer introduced a Single object
tracking (SOT) DRL method for tracking objects with drones.
Similar to the above approach, the SOT tracks a target object
by taking a series of actions to locate the object in a tight
bounding box. A novel reward function that sets up a policy
to reduce the number of steps taken is introduced. Low-
resolution images can also be handled using this approach.

In [9] Zhang and et.al introduce DRL-based object tracking
using a recurrent convolutional neural network. The RL agent
is trained to emphasize the richer part of the frame and learn
inter-frame correlation that leads to maximum overall reward.
In all of these methods, a policy gradient method is used to
update parameters in the direction of the gradient function.
The reward signals are assigned in the same way in the above
methods - the reward is given based on the closeness between
the detected location and the predicted location.

III. BACKGROUND

A. Markov Decision Process (MDP)

A reinforcement learning (RL) task that satisfies the
Markov property is called MDP [book]. In MDP, the reward
and the next state depend on the action the agent picks. The
agent will take a predefined set of actions and each action
will result in a reward and state transition that may or may
not be beneficial for the agent to gather maximum reward.
To formulate a problem as an MDP problem we define the
agent, environment, state, action, and policy.

State Value function in the MDP is expected return from
the state following policy π. Policy π is the brain of the
agent, and it assigns the highest probability to actions that
yield the highest reward Vπ(s) = Eπ[Gt|st = s]. Action-
Value function models an expected return when the agent takes
action ‘a’ and follows policy pi. It is also known as Q-function
and is the notion for Q-learning mathematically expressed as
qπ(s, a) = E[Gt|st = s,At = a] we will be using the action-
value function for our work. An optimal action-value function
qπ(s, a) = max

π
qπ(s, a) models how we can choose policy

pi that maximizes the return via picking highest state-action
value. The optimal Q-function follows the Bellman optimality
equation. Q⋆(s, a) = E[r + γmax

a′
Q⋆(s′, a′)]

B. Deep Q Network (DQN)

Originally designed by Deepmind in 2015, DQN was able
to solve Atari games by combining RL with deep Q networks

Fig. 2. Huber loss (green), and squared error loss as a function of y-f(x)

[5]. DQN is an enhancement of the Q-learning set-off with a
replay memory buffer that stores the transition experience. In
DQN a neural network with parameter θ is trained to estimate
Q-value. The temporal Difference approach is used to train
which updates the value function after each iteration. Update
rule follows the equation below, Q(st, at) ← Q(st, at) +

α[Rt+1+γ
[
max
a′

Q(st+1, a)
]
−Q(st, At), where α is learning

rate and the new Q-value estimation is based on former Q-
value estimation added with immediate reward and discounted
optimal Q-value of next state. The training update gives us the
TD loss represented by δ = Q(s, a) − (r + γmax

a
Q(s′, a)).

TD loss is minimized using the Huber loss function [4].

C. Huber Loss

Huber loss is a combination of Mean Square Error (MSE)
and Mean Absolute Error (MAE) and was first introduced by
Peter J. Huber [1] in 1964. The goal of Huber loss is to get
the potential benefit of both kinds of errors (MSE and MAE).
Huber loss acts like MSE when the outliers in the sample are
few, and acts like MAE when the outliers are abundant. It is
more robust to outliers when the estimates of Q are very noisy
[4].

Lδ(y, f(x)) =

{
1/2(y − f(x))2 |y − f(x)| ≤ δ,

δ|y − f(x)| − 1/2δ2 otherwise

If you represent (y − f(x)) as ’a’ then the Huber function
is quadratic for small values of a and linear for large values.
For classification purposes, there is a variant of Huber loss
called modified Huber shown below that is used. The term
max(0, 1− yf(x)) is called hinge loss [6].

L(y, f(x)) =

{
max(0, 1− yf(x))2 yf(x) ≥ −1,
−4yf(x) otherwise

D. Experience Replay

DQN exploits the idea of experience replay to better ap-
proximate the Deep Q Network. It is a memory buffer that



stores the state-action transitions that the agent observes {s,
a,r,s’}. A random mini-batch of this state-action transition set
is chosen to decorrelate the transition batch since the transition
set close to each other will have no significant difference that
can help in stabilizing the DQN training procedure.

E. Intersection over Union (IoU)

IoU is the ratio of the intersection area to the union area of
the ground truth bounding box and predicted bounding box.
IoU greater than 0.5 signifies True Positive.

IoU =
|A

⋂
B|

|A
⋃
B|

F. Average Precision (AP)

Average Precision is a weighted sum of precision at each
threshold where the weight is the increase in recall.

AP =
K=n−1∑
k=0

[Recalls(k)−Recalls(k+1)] ∗Precision(K)

G. Policy Gradient Method

In any RL problem, our target is to set up a policy that gives
us the maximum expected reward. Policy gradient methods
maximize the overall reward by optimizing the policy itself.
The policy is parameterized with respect to some constant
that affects the policy training. The objective function below
depends on this policy. Policy gradient-based methods are
good for object detection and tracking problems because
tracking is a sequential or continuous process. Policy gradient
methods can be on or off-policy-based.

J(θ) =
∑
sϵS

dπ(s)V π(s) =
∑
sϵS

dπ(s)
∑
aϵA

πθ(a|s)Qπ(s, a)

H. Dynamic Method

Dynamic Method for object detection was introduced by
Caicedo and et.al [2]. In this method, an active detection
model is used for object localization. The agent focuses its
attention on possible regions inside the image frame, as well as
the environment, to identify the correct location of the object
of interest. The agent performs its action of localizing the
target object in a tight bounding box. The reward is given to
the agent based on the IoU of ground truth and the detected
bounding box of the target object. A series of transformations
are applied to the bounding box of a target to get a tight and
good overlapping bounding box that yields maximum reward
for the agent.

Fig. 3. Transformations applied to BBox [2]

Fig. 4. Dynamic Method Architecture as in [2]

I. Hierarchical Method

The hierarchical Method for object detection was introduced
by Bueno and et.al [3]. In this method, the agent is trained to
focus on the richer part of the image and zoom in on the target
object. There are five predefined non-overlapping regions of
interest- four quadrants, and one central region. The policy π
is set to allow the agent to look for the target object in the
predefined area in as few steps as possible. The basic working
philosophy of this method is represented in Figure 4.

IV. EXPERIMENT

A. Problem Formulation

Object detection is a sequential decision-making process
since the target object in a given video is going to follow a
particular trajectory. We can formulate the object detection
problem as a Markov Decision Process problem. The MDP
problem is parameterized with state S, action A, and reward R
values for each episode. An image frame is an environment,
and the virtual agent is tasked with the transformation of
a bounding box or looking for a target object inside the
predefined areas like in the Hierarchical method.

The agent is programmed to follow a particular set of
actions and policy π is defined so that it takes optimal action
leading to maximal reward. Agent receives reward Rt at a time
’t’ for taking action. A goal of the agent is to maximize the
overall reward which is only possible if the agent finds better
detection IoU in fewer transformation steps. The Q-table holds
state, and action values and is used during the training process.
We will also use the replay buffer to hold all the state-action
transition set

{
s,a,r,s’

}
.

B. Action and Reward

In general DRL-based object detection, the base detector is
a Convolutional Neural Network (CNN), and the RL comes
into play for correcting the subpar detection. The RL model
is framed in a way that sort of replicates human psychology,
positive or negative reinforcement for doing something, as in
Fig. 1. For better object detection, the agent in our task has a
set of actions to take and each action has some reward with



Fig. 5. Hierarchical method in action for object localization [3].

it. Actions are primarily related to transforming the bounding
box obtained by CNN-based detection for better detection i.e.
IoU ≥ 0.7. If skϵS and akϵA represent state and action at step
k, we can formulate the action in the way shown below,

sk+1 = f(sk, ak, rk) = (bk+1, dk+1)

fp(bk, ak) = xk ±∆xk, yk ±∆yk, hk, wk

= xk, yk, hk ±∆yk, wk ±∆xk

∆xk = αwk,∆yk = αhk

For a function of the state, action, and reward we will
have a bounding box associated with a particular frame and
transformation dynamics vector dk. Given a bounding box
result from the previous time stamp action ’a’ will perform a
transformation to the bounding box. There are eight actions
that will perform a transformation to the bounding box.

The reward is designated for each action that the agent
takes, but for any image, a total reward is calculated based
on overall rewards as gathered by performing the bounding
box transformation for better IoU with ground truth bounding
box. In the training phase, an agent will take several actions
to finally figure out the optimal way to get better bounding
box detection and overall reward. We define reward as,

Rt =

T∑
t−1

γtrt (1)

Rs(t) =


η if IoU ≥ 0.7

θ if 0.5 ≤ IoU ≤ 0.7

−η otherwise

C. Dynamic Method implementation

Based on the original paper we were able to imitate the
experiment for single object detection using the PASCAL
VOC 2012 dataset for training and testing purposes. The
reward values are different for each 8 different action
dynamics. Based on actions taken new IoU is compared with
respect to the ground truth and if the IoU is ≥ 0.5 the agent
is rewarded with +3 else -3. VGG16 pre-trained on Imagenet
is used as a base detection network. The Huber loss function
introduced above is used in our Q-model to smooth the
training. The Delta δ value is set at 1 for our model’s Huber

loss. The Q-network is only 3 layers deep. The actions are
numbered from 0 to 7 for geometric transformation to the
bounding box and action 8 is the trigger that stops the agent
from applying any more transformation to the bounding box.
The agent takes a maximum of 20 steps to take actions that
will yield the maximum total reward for that frame.

Fig. 6. Reward accumulated for every 30 images.

The reward for 30 images that were tested is based on the
actions the agent took to find the target object and tightly
localize it. The plot below 7 shows the type of action that
was taken the most during the training for all frames used
during the training. State-action pairs from 10 previous steps
are recorded for the experience replay.

The training process takes more than 22 minutes for each
epoch which puts a constraint on the epochs we can train our
agent for. Even by using the GPU from Google Colab, the
RAM ran out of space to continue the training if we attempted
to train for longer epochs. The authors of the dynamic method
suggest training for 50 epochs but that is not possible given our
computational limit. The IoU we got when testing 100 images
is so significant, but we can able to tweak every model to
train more accurately and the agent can be modified to better
understand the target and localize it.

We performed dynamic method-based detection on the



Fig. 7. Actions taken by the agent to collect the reward.

Fig. 8. IoU for 100 images after training for 12 epochs

VOC2012 and VOC2007 datasets and computed the Average
precision (AP) and Average Recall (AR) for all 2o classes
in the dataset. We set the IOU threshold at [0.4, 0.5, 0.6] and
computed the AP and AR after the training. In the table below
we only present the AP and AP for the IoU threshold of 0.5
for 5 classes.

Class cat motorbike bus aeroplane horse
AP 39.31 32.06 34.43 38.00 32.18
AR 62.18 56.44 58.11 61.26 54.68

For training, we initialize the following parameters - input
image size of 224x224, α is 0.2, ϵ is 1.0 with a decay rate of
0.1, the replay memory can hold 1000 state-action transitions,
and we train the agent for 15 episodes. We attempted to train
the agent for entire classes in the dataset but we encountered
that the RAM would run out mid-training and the training
would collapse, so due to limited computational means, we
settled with training the agent for only 6 classes out of 20

Fig. 9. Precision Curve at different IoU thresholds

Fig. 10. Recall curve at different IoU thresholds

from the original PASCAL VOC dataset.

Average Precision and Recall show a sharp decline as we
increase the IoU threshold which signifies that your DQN
agent isn’t learning or trained well enough to make better
detection and prediction.

D. Dataset

We used the PASCAL VOC 2012 dataset to perform our
experiment. The dataset was released in 2012 as a part of
the Visual Object Classes Challenge 2012 (VOC 2012). There
are 20 classes relating to persons, animals, vehicles, and
indoor objects. Around 5717 images from all classes were
used for training and 5823 unlabelled images were used for
validation. The dataset has a training set of labeled images but



the validation has no label and the trained agent is expected
to print the label and detect the object inside the image.
We trained our Dynamic method-based model using only the
’airplane’ class and in another experiment, we trained the
model using all 20 classes from the dataset but performed
testing on only six classes. The training and testing require
high RAM and a good GPU.

V. RESULT AND ANALYSIS

The average reward for 30 images we tested from the first
experiment, presented in Fig 6, is around 8 and from bar
chart Fig 7 we can see that the number of trigger action,
which stops the agent from transforming the bounding box
(BBox), is least among all actions taken which implies that
the agent had to quit bounding box transformation before
being able to find the best overlapping window for the target
object. Probably increasing the max steps will allow the
agent to do some more bounding box transformation and find
better IoU and hence more reward. In the implementation,
the reward is either +1 or -1 but we can make better policy
π for the agent if we assign 3rd reward of 0 if the agent
finds an overlap of 0.5 or greater, in this way, the agent
might follow better policy. The agent constantly keeps
changing the policy at each state to get more reward so
we should allow the agent to take more optimal action if
it finds IoU of ≥ 0.5. The trigger actions should also stop
the agent from more BBox transformation if at any state
the agent gets an overlap of 70 percent or more. This will
allow the agent to keep maximum reward and be conservative.

In our other experiment, the DQN is still only 3 layers
and we are using the VGG16 base as a feature extractor. The
training for each class’s single episode takes around 2 mins
on Google Colab so the total experiment took around 4 hours
to finish and get the visualization result. There was a sharp
decline in the IoU for all the object classes as we increased
the IoU threshold from 0.4 to 0.8 with an increment of 0.1.
This tells us that we need better policy and train the agent for
a higher number of episodes with possibly a larger training
dataset. We believe that we should put some constraint on
the agent’s free movement of the bounding box to localize
the object better and faster.

The implementation of the dynamic method was challenging
and time-consuming since there were more actions to be taken.
We believe that the use of DRL for object detection problems
is in itself tricky and we might not be benefiting from the
potential of reinforcement learning instead we are interfering
with the detection power of deep neural networks. Even
though the results aren’t great, the implementation showed
us how we can apply DRL to problems that are not trivial
to the reinforcement learning area. It might be beneficial
to experiment using other pre-trained models like ResNet,
Inceptionv3, and EfficientNet as feature extractors. Training
the agent for more episodes and a larger dataset will in itself
not be beneficial if we don’t formulate a better policy. The

reward function along with the policy of the agent needs to
be redefined so we can get better results.

VI. FUTURE WORK

Working on this project has been a really rewarding ex-
perience as we were exposed to the implementation of rein-
forcement learning for object-tracking problems. We would
like to continue working on self-design and implementation
of DRL for object tracking problems. It will be impactful
if we can create or use some virtual simulated environment
where we can see the visualize the agent in action. In the
physical world we can program a drone to follow an object
and use reinforcement learning techniques to enable the robot
to take action i.e. follow the target object if the bounding
box obtained by the agent gets smaller than the bounding
box obtained from the state-of-the-art object tracking method.
Our very immediate work will be to optimize and redefine the
policy and reward function in the dynamic method so we can
achieve better precision-recall for our dataset. We will also
emphasize using our own dataset that contains a tiny ball as
a target object to see the performance of DQN for detecting
smaller objects while not using any pre-trained model as a
base network.

One other work that we want to do is to explore the use
of reinforcement learning in trajectory prediction tasks. If
applicable, reinforcement learning can benefit the LSTM or
CNN-based trajectory prediction. The agent will be trained to
correct or interpolate the missing links in the trajectory.

VII. CONCLUSION

In this paper, we experiment using the dynamic method for
object detection using the PASCAL VOC2012 as a train and
validation dataset. The dynamic method applies a transforma-
tion to the bounding box obtained from the base detection
model hence at each step it tries to maximize the reward by
taking action but it also shows bad performance in localizing
the target object. The hierarchical method that we weren’t able
to implement has predefined regions where the agent tries to
find the object and localize, but the dynamic method allows for
free movement of the bounding box which subsequently takes
a longer time to train and still performs worse. The average
precision (AP) and the Recall for VOC2012 object classes like
cat, dog, motorbike, and airplane degrade as we increase the
IoU threshold. We can conclude that more work needs to be
done to optimize the object detection.

ACKNOWLEDGMENT

Credit to all the online articles that help in understanding
the problem. We thank Dr. Maida for all his effort in helping
us understand the fundamentals of reinforcement learning
and how object detection problems can be formulated as RL
problems. We also want to thank all of our colleagues in
the class who listened and offered their ideas for solving our
problem.



Fig. 11. Results from the experiment that shows the agent trying bounding box transformation to tightly localize the target object. The green bounding box
is ground truth, the blue bounding box is the detected one and the red bounding box shows the transformation applied to the predicted bounding box.
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