
Housing Price Prediction on Kaggle
Prithvi Raj Singh

Center for Advance Computer Studies
University of Louisiana at Lafayette

Lafayette, US
prithvi.singh1@louisiana.edu

Abstract—In this paper, we will be summarizing our work on
the Kaggle Housing Prediction competition. We used the D2L
book as our reference worked on tuning the hyperparameters
and observed the performance of our model. The result of
submission on Kaggle for official testing is RMSE. Our work on
tuning the hyperparameters didn’t necessarily bring any positive
change. We have also tried to answer and explain our model,
variable standardization, layer count, and regularization. The
best performance our system reported was a training error of
0.126395 and, a valid error of 0.146429, but our chart showed
that the model was underfitting. We obtained a score of 0.15151
on our official submission on Kaggle.

Index Terms—Hyperparameter, RMSE, Tuning, Standardize
Variable.

I. INTRODUCTION

The housing market is a very volatile market, the price of
property can swiftly change in a very short time. There have
been several efforts in developing advanced Machine Learning
techniques that can precisely predict the price of a house at a
given time, and location. We basically collect and feed old
housing market data with several features to our Machine
Learning model and it gives the estimate given a new set of
data. In this paper we will participate in an online Kaggle
[2] Competition to predict the housing market and explain the
technique we used as stated in [1]. We will also explain the
different error values we get as we change the hyperparameters
and re-run our model. We will be following the instruction
from the D2L book [1] and explain the exercise problem from
Chapter 4 ’Prediction of Housing on Kaggle’.

II. METHODOLOGY

For our experiment, we built a linear regression model
with a single sequential layer. We will be training our model
with square loss. The mean squared error gives us the means
of squares of errors between labels and prediction. Since
the housing market is based on different geographical, and
social quantities we are interested in getting the relative
error over absolute error. We will use the log RMSE (Root
Mean Square Error)to compute the relative error. RMSE
calculates the error between the log of the predicted and
the log of the label price. For the model that we submitted
on Kaggle, we used Adam Optimizer. We perform K-fold
cross-validation on our training dataset. Our model gives
training and validation error averages based on the times

Self-funded with time and energy!.

we train. Tuning the hyperparameters of our model we can
see changes in our error values. In each fold of the training
feature, train label, epochs, learning rate, and weight decay
our model will iterate our given fold number (K). Each
iteration will have given epochs, learning rate, batch size,
and weight decay. Our validation model will give us the train
log RMSE and validation log RMSE for each fold. After
initial testing and tuning our hyperparameters, we go on to
use the entire training dataset for training purposes and use
our model on the test dataset for submission on Kaggle.

log RMSE =

√
1
nΣ

n
i=1

(
lg yi − lg ŷi

)2

III. RESULTS

In this section, we will explore the performance of the model
based on a particular set of hyperparameters used. We will start
with the base model as mentioned in the D2L book and also
explain the results of our own hyperparameter tuning.

A. Performance on Untuned Hyperparameters

Based on untuned hyperparameters as used in the D2L
book [1] we see the train log RMSE and validation log
RMSE to be close to what is mentioned in the book. We get
the average train log RMSE of 0.165537 and validation log
RMSE of 0.170339. Here we are doing 5-fold cross-validation
with 100 epochs, a learning rate of 5, no weight decay, and a
batch size of 64. The chart shows that the initial model has
no overfitting or underfitting.

Fig 1: Average Train and Validation log RMSE on untuned
hyperparameters.



B. Performance with Hyperparameter Tuning
We will observe the performance of our model based on

tuning the weight decay, learning rate epochs, batch size, and
different values for K-fold cross-validation. With 10, 200,
3e-3, 0.3, and 32 as our number of the fold, epochs, learning
rate, weight decay, and batch size respectively we will see that
the average train and valid errors are 5.086963, and 5.089255
respectively. This is not an ideal result even though our
model shows no sign of overfitting. Changing the epochs, and
batch size, while keeping the learning rate and weight decay
the same as above doesn’t produce any competitive results.

Fig 2: Avg train and valid error tuned as mentioned above.

If we radically increase our learning rate to 3e1, reduce
the weight decay to 1e-2, and have a batch size of 128
keeping everything else the same will give us considerably
better and competitive results. We will have the average
train and validation log RMSE of 0.126395, and 0.146429
respectively. The chart (Fig 3) shows a linear decline in
error value and a slight deviation of train and validation
error. Our Chart shows that the model is overfitting.

Fig 3: Avg train and valid error tuned as mentioned above.

Tuning the learning rate, weight decay, and batch size
doesn’t necessarily give us the best result we are looking for.

Changing the hyperparameters won’t necessarily give us
any better results. In the experiment we conducted by adding

a number of layers in the model with L2 regularization,
we did see any improvement. In fact, there was massive
overfitting when we added one extra dense layer. The results
were 0.122865 and 0.214159 for average train and validation
log RMSE. We used 10, 100, 5, 0, and 64 as our k, epochs,
learning rate, weight decay, and batch size. Refer to Figure 4.

Fig 4: Avg train and valid error tuned as mentioned above.

When we added two extra layers and a dropout layer we
got appropriate fitting but the results were way higher and
noncompetitive. We achieved average train log RMSE and
valid log RMSE of 2.051237 and 2.051151 respectively. Any
extra layer addition just worsens the accuracy.

When experimenting with the optimizer we changed the
Adam optimizer to SGD optimizer and kept the learning rate
to 0.01. The result is huge overfitting even though the average
log RMSE of 5-fold validation is close.

Fig 5: Avg train and valid error with SGD optimizer used.

The addition of layer reduces the average train loss but the
model always shows overfitting. The use of a dropout layer
or weight attenuation doesn’t really help. We can’t achieve
appropriate fitting or better accuracy tuning hyperparameters.
In one of the final tries, we got an average train error of
0.134213 and a validation error of 0.200266. Our model
shows significant overfitting as shown below.



TABLE I

K Epochs lr wt. decay batch
size

RMSE
Train Test

5 200 2 0.03 32 0.134 0.200
5 200 3 0.3 128 0.116 0.174
10 100 5 0 64 0.122 0.214
10 100 4e1 1e-2 128 0.129 0.143
5 100 5 0 64 0.165 0.170
10 200 3e-3 0.3 32 5.086 5.089

Fig 6: Representing model with activation function and
dropout layer.

When we used the whole dataset for our model to train on
we got the train log RMSE of 0.136248, with the 200 epochs,
learning rate of 5, weight decay of 0, and batch size of 64.

Fig 7: Our final result using who data for training.

Our model has used Standardized Variables to balance
the feature size. If we don’t use standardizing variable we
will get improper feature size that is different for different
features. We will get an excess amount of multicollinearity.
If a standardized variable isn’t used we are at risk of getting
both missing statistically significant results and producing
misleading results.

IV. DISCUSSION

Our attempt was to do some hyperparameter tuning and
increase the efficiency of our model. We even tried to optimize
our model by increasing the layer count and implementing
regularization, but our model didn’t show any significant
overall improvement. The results of experimenting with hyper-
parameters weren’t exactly or even close to our expectations.
Adding any extra sequential layer and regularization made
performance worse. We have a feeling that the dataset given
is very simple and might not be good for working with many
layers of deep networks. If we can use other datasets with
similar features we can train our model on bigger datasets and
see how the regression model performs. We have to test our
model with so many different numbers for hyperparameters to
tune our model to have peak performance.

V. CONCLUSION

Our target was to minimize the error optimally so that we
could achieve a higher ranking on the Kaggle Competition,
but we failed. Our experiment didn’t perform as expected.
The use of more layers, regularization, and dropout worsen
the performance of the model instead of making it better.
We have a general understanding that increasing the layer
count might not be the best thing to do for this problem.
The only proper results we achieved were the average
train log RMSE of 0.165537 and validation log RMSE of
0.170339, which isn’t an optimal result to win us the Kaggle
competition. The use of ReLU should be thought of since
it reduces the gradient descent of the model. Experimenting
with the layer count and regularization didn’t increase our
performance. Our result of submission on Kaggle was 0.15151

VI. FUTURE WORK

One of the most important things for us will be the full
implementation of our own code for the Housing Prediction
problem. We believe doing our own coding implementation,
filtering out unnecessary features in the dataset, and adding
features that may be needed can significantly peak the model
performance. We shall also try using different optimizers.
In the future, we shall also focus on layer counts and
regularization despite these things not working as our
expectation.

REFERENCES

[1] Zhang, Aston, Zachary C. Lipton, Mu Li, and Alexander J. Smola.
”Dive into deep learning.” arXiv preprint arXiv:2106.11342 (2021).

[2] ”Kaggle: Your Machine Learning And Data Science Community”.
Kaggle.Com, 2022, https://www.kaggle.com/.


	Introduction
	Methodology
	Results
	Performance on Untuned Hyperparameters
	Performance with Hyperparameter Tuning

	Discussion
	Conclusion
	Future Work
	References

