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Abstract

Deploying deep neural networks on ultra-low-power microcontrollers remains challenging due to
stringent memory and computational constraints. While uniform quantization and pruning tech-
niques can reduce model size, they often fail to exploit per-layer redundancy and result in suboptimal
accuracy-efficiency trade-offs. This work presents SG-MPQP (Sensitivity-Guided Mixed-Precision
Quantization with Structured Pruning), a practical framework that jointly optimizes neural network
compression for TinyML vision applications. Our approach combines magnitude-based structured
channel pruning with a lightweight layer sensitivity metric that guides per-layer bitwidth assign-
ment (8/6/4 bits) without expensive neural architecture search. The sensitivity score, defined as
Sl,b = ∆Al,b/MemorySaved(b), quantifies the accuracy impact per unit of memory saved when quan-
tizing layer l to bitwidth b. A greedy allocation algorithm then assigns lower bitwidths to less sensitive
layers while respecting hardware memory budgets. We validate our method on CIFAR-10 and TinyIm-
ageNet using MobileNetV2 and ResNet-20 architectures deployed on ARM Cortex-M4 microcontrollers
(Arduino Nano 33 BLE Sense @ 80MHz).Our framework requires no hardware-in-the-loop search, mak-
ing it accessible for rapid TinyML deployment.
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1 Introduction

Motivation: TinyML enables intelligent processing on battery-powered edge devices, but conventional
deep learning models exceed the memory (<256KB RAM) and computational budgets of microcontrollers.
Uniform compression strategies ignore layer-wise sensitivity, leading to unnecessary accuracy degradation
or missed optimization opportunities.

Hypothesis: We hypothesize that combining structured pruning with sensitivity-guided mixed-precision
quantization can achieve superior compression ratios while maintaining accuracy, as different layers ex-
hibit varying tolerance to quantization and pruning.

Approach: Our four-stage pipeline: (1) trains baseline models (MobileNetV2/ResNet-20); (2) applies
structured channel pruning using magnitude-based importance; (3) performs layer-wise sensitivity analy-
sis to determine optimal bitwidth allocation; (4) fine-tunes with quantization-aware training (QAT) and
deploys on ARM Cortex-M4 hardware.

Planned Key Contributions:

� A unified compression framework combining structured pruning and mixed-precision quantization
without neural architecture search.

1



� A lightweight sensitivity metric for efficient per-layer bitwidth assignment.

� Comprehensive evaluation on real TinyML hardware with validated memory and latency improve-
ments.

� Reproducibility document to assist in adoptation of our work and further research in applications
of TinyML.

2 Methodology

2.1 Structured Channel Pruning

We adopt magnitude-based pruning via TensorFlow Model Optimization Toolkit. For each convolutional
layer l with weights Wl ∈ RCout×Cin×k×k, channel importance is computed as Ic = ∥Wl,c∥1, and channels
with lowest Ic are removed until target sparsity sl is achieved.

2.2 Layer Sensitivity Analysis

For each layer l and candidate bitwidth b ∈ {8, 6, 4}, we quantize only that layer and measure validation
accuracy drop ∆Al,b. The sensitivity score is defined as:

Sl,b =
∆Al,b

MemorySaved(b)
(1)

This metric prioritizes layers where aggressive quantization causes minimal accuracy impact per unit of
memory saved.

2.3 Mixed-Precision Assignment

Given total memory budget Bmax, we solve the optimization:

min
bl

∑
l

Sl,bl s.t.
∑
l

Bits(bl) ≤ Bmax (2)

A greedy allocator assigns lower bitwidths to layers with smallest Sl,b values, enabling efficient compression
while preserving accuracy.

2.4 Quantization-Aware Training and Deployment

After bitwidth assignment, we perform QAT using TensorFlow Model Optimization Toolkit to recover
accuracy. Integer-only TFLite models are deployed on ARM Cortex-M4 via TensorFlow Lite Micro, with
latency measured using hardware cycle counters.

3 Planned Experiment

Setup: CIFAR-10 (60K images, 32×32×3) and TinyImageNet (200 classes, 64×64×3); MobileNetV2
(α = 0.35) and ResNet-20; ARM Cortex-M4 @ 80MHz (Arduino Nano 33 BLE Sense); TensorFlow,
Tensorflow model optimization toolkit, TensorFlow Lite Micro.

4 Final Remarks

We aim to present SG-MPQP, a practical framework combining structured pruning and sensitivity-guided
mixed-precision quantization for TinyML vision model. We expect our approach will achieve substantial
compression and speedup on real ARM Cortex-M4 hardware without expensive neural architecture search.
The lightweight sensitivity metric enables efficient bitwidth assignment, making the framework accessible
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for rapid edge AI deployment. Future work will explore sub-4-bit quantization and dynamic precision
adjustment for further optimization.

Sample of how we will present results:

Method Acc. (%) Size (KB) Lat. (ms)
FP32 Baseline - - -
8-bit QAT - - -
Pruning Only - - -
Mixed-Precision - - -
SG-MPQP (Ours) - - -

Table 1: We intent to present our findings on CIFAR-10 and TinyImageNet with MobileNetV2 and
ResNet-20 architectures deployed on ARM Cortex-M4 microcontrollers as shown in the table.

Reproducibility: We will provide a detailed reproducibility document including code, hyperparameters,
and deployment instructions to facilitate adoption and further research in TinyML applications once the
work is complete and published.
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